Skip to main content
Catalax provides a comprehensive library of predefined kinetic law functions organized by biochemical categories. These functions generate mathematically correct rate equations that can be directly used in your reaction models, ensuring consistent and validated kinetics.

Overview

Kinetic laws in Catalax are Python functions that return mathematical expressions as strings. They are organized into categories:
  • catalax.laws.enzymatic - Enzymatic rate laws (Michaelis-Menten, Briggs-Haldane, etc.)
  • catalax.laws.mass_action - Mass action kinetics
  • catalax.laws.inhibition - Inhibition mechanisms
  • catalax.laws.activation - Activation mechanisms
  • catalax.laws.hill_type - Hill-type cooperative kinetics

Basic Usage: Michaelis-Menten Example

Step 1: Import the Kinetic Law

import catalax as ctx
from catalax.laws.enzymatic import michaelis_menten

# Create model and add states
model = ctx.Model(name="Enzyme Kinetics")
model.add_states(S="Substrate", P="Product")
model.add_constants(E="Enzyme")

Step 2: Generate the Kinetic Equation

The michaelis_menten function takes species and parameter names as arguments:
# Use default parameter names
equation = michaelis_menten()
print(equation)
# Output: "(k_cat*E_t*S)/(K_m + S)"

# Customize species and parameter names to match your model
# Note: Parameters do not need to be renamed, but species do
#       Renaming parameters is useful if you re-use the law
#       elsewhere and want to make sure parameters are unique
equation = michaelis_menten(
    e_t="E",        # Enzyme concentration (matches state 'E')
    s="S",          # Substrate concentration (matches state 'S') 
    k_cat="k_cat",  # Catalytic rate constant
    K_m="K_m"       # Michaelis constant
)
print(equation)
# Output: "(k_cat*E*S)/(K_m + S)"

Step 3: Add Reaction with Kinetic Law

# Add the reaction using the kinetic equation
model.add_reaction(
    "S -> P",
    symbol="enzymatic_conversion",
    equation=equation
)

Complete Working Example

import catalax as ctx
from catalax.laws.enzymatic import michaelis_menten

# 1. Create model and states
model = ctx.Model(name="Michaelis-Menten Kinetics")
model.add_states(S="Substrate", P="Product")
model.add_constants(E="Enzyme")

# 2. Generate kinetic equation with matching names
equation = michaelis_menten(
    e_t="E",  # Must match enzyme state name
    s="S",  # Must match substrate state name
    k_cat="k_cat",
    K_m="K_m",
)

# 3. Add reaction
model.add_reaction("S -> P", symbol="r1", equation=equation)

# 4. Set parameter values
model.parameters["k_cat"].value = 10.0
model.parameters["K_m"].value = 5.0

# 5. Create dataset and simulate
dataset = ctx.Dataset.from_model(model)
dataset.add_initial(S=100, E=1, P=0)

config = ctx.SimulationConfig(t1=10, nsteps=100)
results = model.simulate(dataset=dataset, config=config)
results.plot()

Parameter Naming Strategy

Default Parameters

Each kinetic law function provides sensible defaults:
# Check function signature for defaults
help(michaelis_menten)
# michaelis_menten(e_t="E_t", s="S", k_cat="k_cat", K_m="K_m")

Custom Parameter Mapping

Always match your model’s naming convention:
# If your model uses different names
model.add_states(enzyme="Enzyme", substrate="Substrate", product="Product")

equation = michaelis_menten(
    e_t="enzyme",      # Match your state name
    s="substrate",     # Match your state name
    k_cat="vmax",      # Use your preferred parameter name
    K_m="Km"           # Use your preferred parameter name
)

Advanced Examples

Competitive Inhibition

from catalax.laws.inhibition import competitive_inhibition_of_irreversible_unireactant_enzyme_by_product

model = ctx.Model(name="Product Inhibition")
model.add_states(S="Substrate", E="Enzyme", P="Product")

equation = competitive_inhibition_of_irreversible_unireactant_enzyme_by_product(
    e_t="E",
    s="S", 
    p="P",
    k_cat="k_cat",
    K_s="K_m",
    K_p="K_i"
)

model.add_reaction("S -> P", symbol="inhibited_reaction", equation=equation)

Two-Substrate Reaction

from catalax.laws.enzymatic import irreversible_michaelis_menten_for_two_substrates

model = ctx.Model(name="Bi-substrate Reaction")
model.add_states(A="Substrate_A", B="Substrate_B", E="Enzyme", P="Product")

equation = irreversible_michaelis_menten_for_two_substrates(
    a="A",
    b="B", 
    e_t="E",
    K_mA="K_mA",
    K_mB="K_mB", 
    K_iA="K_iA",
    k_cat="k_cat"
)

model.add_reaction("A + B -> P", symbol="bisubstrate", equation=equation)

Best Practices

1. Match Species Names Exactly

❌ Wrong - Name Mismatch:
model.add_states(substrate="Substrate")

# This will fail - 'S' doesn't match 'substrate' 
equation = michaelis_menten(s="S")  
✅ Correct - Names Match:
model.add_states(substrate="Substrate")

equation = michaelis_menten(s="substrate")  # Matches state name

2. Verify Reaction Stoichiometry

❌ Wrong - Kinetics Don’t Match Reaction:
# Using single-substrate kinetics for two-substrate reaction
model.add_reaction(
    "A + B -> P",
    symbol="wrong",
    equation=michaelis_menten(s="A")  # Only considers A, ignores B
)
✅ Correct - Kinetics Match Reaction:
# Using appropriate two-substrate kinetics  
from catalax.laws.enzymatic import irreversible_michaelis_menten_for_two_substrates

model.add_reaction(
    "A + B -> P", 
    symbol="correct",
    equation=irreversible_michaelis_menten_for_two_substrates(a="A", b="B", e_t="E")
)

3. Choose Appropriate Kinetic Laws

Consider the mechanism:
  • Single substrate/product: michaelis_menten
  • Two substrates: irreversible_michaelis_menten_for_two_substrates
  • Product inhibition: Functions from catalax.laws.inhibition
  • Cooperative binding: Functions from catalax.laws.hill_type
  • Simple mass action: Functions from catalax.laws.mass_action

4. Validate Parameter Units

# Set parameters with appropriate values and check units
model.parameters.k_cat.value = 100.0      # s⁻¹
model.parameters.K_m.value = 0.1          # Same units as substrate concentration  
model.parameters.K_i.value = 0.05         # Same units as inhibitor concentration

5. Document Your Kinetic Choices

model = ctx.Model(name="Enzyme with Product Inhibition")

# Document the kinetic mechanism chosen
equation = competitive_inhibition_of_irreversible_unireactant_enzyme_by_product(
    e_t="E", s="S", p="P", 
    k_cat="k_cat", K_s="K_m", K_p="K_i"
)

# Add clear reaction description
model.add_reaction(
    "S -> P",
    symbol="competitive_inhibition", 
    equation=equation
)

Exploring Available Laws

Browse by Category

# List all enzymatic laws
from catalax.laws import enzymatic
print([func for func in dir(enzymatic) if not func.startswith('_')])

# List all inhibition laws  
from catalax.laws import inhibition
print([func for func in dir(inhibition) if not func.startswith('_')])

Function Documentation

# Get detailed information about any kinetic law
from catalax.laws.enzymatic import michaelis_menten
help(michaelis_menten)
I